Email updates

Keep up to date with the latest news and content from Cardiovascular Diabetology and BioMed Central.

Open Access Original investigation

Role of ROCK upregulation in endothelial and smooth muscle vascular functions in diabetic rat aorta

Figen Amber Cicek, Hilmi B Kandilci and Belma Turan*

Author Affiliations

Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, 06100, Turkey

For all author emails, please log on.

Cardiovascular Diabetology 2013, 12:51  doi:10.1186/1475-2840-12-51

Published: 27 March 2013

Abstract

The RhoA/ROCK signaling pathway mediates vascular smooth muscle contraction while endogenous NO induces vasodilation through its inhibition. Since myosin light chain phosphatase (MLCP) and eNOS are targeted by RhoA/ROCK upregulation then turn to lead abnormalities in vasculature, we aimed to examine whether less endothelial NO-production and inhibited eNOS together with an upregulation of RhoA/ROCK signaling pathway in thoracic aorta can play an important role in vascular dysfunction under hyperglycemia.

We used streptozotocin-injected rats, as a model of type 1 diabetes, and their lean controls to investigate the role of ROCK upregulation in the function of toracic aorta by using electrophysiological and biochemical techniques.

The protein level of ROCK isoform ROCK2 was found to be 2.5-fold higher in endothelium-intact aortic rings of the diabetic rats compared to those of the controls while its level in endothelium-denuded rings was similar among these two groups. Phosphorylation level of eNOS in endothelium-intact rings from the diabetics was 50% less compared to that of the control. ROCK inhibitors, either Y27632 or HA1077, induced concentration-dependent relaxation with a marked left-shift in phenylephrine pre-contracted endothelium-intact rings from either diabetics or high glucose incubated controls while pretreatment of these rings with L-NAME abolished this shift, fully. Moreover, phosphorylation levels of both MLCP and MLC in endothelium-denuded rings were markedly higher in the diabetics than the controls.

We demonstrated that diabetes-induced vascular dysfunction can arise due to either inbition of eNOS, thereby less endothelial NO-production, either directly or indirectly, in part, due to an upregulation of ROCK2 by hyperglycemia. Additionally, our data demonstrate that high phosphorylation levels of both MLC and MLCP in endothelium-denuded rings can be due to a less endothelial NO-production dependent ROCK upregulation in the smooth muscle cells under hyperglycemia, as well.

Keywords:
Vessel function; Nitric oxide; Diabetes; eNOS; ROCK pathway